Structural basis for the sequence-dependent effects of platinum–DNA adducts
نویسندگان
چکیده
The differences in efficacy and molecular mechanisms of platinum based anti-cancer drugs cisplatin (CP) and oxaliplatin (OX) have been hypothesized to be in part due to the differential binding affinity of cellular and damage recognition proteins to CP and OX adducts formed on adjacent guanines in genomic DNA. HMGB1a in particular exhibits higher binding affinity to CP-GG adducts, and the extent of discrimination between CP- and OX-GG adducts is dependent on the bases flanking the adducts. However, the structural basis for this differential binding is not known. Here, we show that the conformational dynamics of CP- and OX-GG adducts are distinct and depend on the sequence context of the adduct. Molecular dynamics simulations of the Pt-GG adducts in the TGGA sequence context revealed that even though the major conformations of CP- and OX-GG adducts were similar, the minor conformations were distinct. Using the pattern of hydrogen bond formation between the Pt-ammines and the adjacent DNA bases, we identified the major and minor conformations sampled by Pt-DNA. We found that the minor conformations sampled exclusively by the CP-GG adduct exhibit structural properties that favor binding by HMGB1a, which may explain its higher binding affinity to CP-GG adducts, while these conformations are not sampled by OX-GG adducts because of the constraints imposed by its cyclohexane ring, which may explain the negligible binding affinity of HMGB1a for OX-GG adducts in the TGGA sequence context. Based on these results, we postulate that the constraints imposed by the cyclohexane ring of OX affect the DNA conformations explored by OX-GG adduct compared to those of CP-GG adduct, which may influence the binding affinities of HMG-domain proteins for Pt-GG adducts, and that these conformations are further influenced by the DNA sequence context of the Pt-GG adduct.
منابع مشابه
Flanking Bases Influence the Nature of DNA Distortion by Platinum 1,2-Intrastrand (GG) Cross-Links
The differences in efficacy and molecular mechanisms of platinum anti-cancer drugs cisplatin (CP) and oxaliplatin (OX) are thought to be partially due to the differences in the DNA conformations of the CP and OX adducts that form on adjacent guanines on DNA, which in turn influence the binding of damage-recognition proteins that control downstream effects of the adducts. Here we report a compre...
متن کاملMonofunctional and Interstrand DNA Adducts of Platinum(II) Complexes
The effects produced in DNA by monofunctional or interstrand adducts of platinum(II) complexes have been summarized. The monofunctional adducts destabilize DNA in a sequence-dependent manner via conformational distortions, which may have a denaturational character. It has been suggested that this conformational alteration facilitates in DNA the formation of the bidentate DNA adducts, whose form...
متن کاملDNA minor groove adducts formed by a platinum-acridine conjugate inhibit association of tata-binding protein with its cognate sequence.
PT-ACRAMTU ([PtCl(en)(ACRAMTU-S)](NO(3))(2), en = ethane-1,2-diamine, ACRAMTU = 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea) is a cytotoxic platinum-acridine conjugate previously shown to form adducts with the N3 endocyclic nitrogen of adenine in the DNA minor groove. This unusual observation and our prior determination of the pronounced 5'-TA/TA base-step affinity of the drug have prom...
متن کاملRecognition of platinum-DNA adducts by HMGB1a.
Cisplatin (CP) and oxaliplatin (OX), platinum-based drugs used widely in chemotherapy, form adducts on intrastrand guanines (5'GG) in genomic DNA. DNA damage recognition proteins, transcription factors, mismatch repair proteins, and DNA polymerases discriminate between CP- and OX-GG DNA adducts, which could partly account for differences in the efficacy, toxicity, and mutagenicity of CP and OX....
متن کاملMonofunctional platinum-DNA adducts are strong inhibitors of transcription and substrates for nucleotide excision repair in live mammalian cells.
To overcome drug resistance and reduce the side effects of cisplatin, a widely used antineoplastic agent, major efforts have been made to develop next generation platinum-based anticancer drugs. Because cisplatin-DNA adducts block RNA polymerase II unless removed by transcription-coupled excision repair, compounds that react similarly but elude repair are desirable. The monofunctional platinum ...
متن کامل